Mark Scheme 4723 June 2006

4723 Mark Scheme June 2006

1		Obtain Obtain Attemp	ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$ $2(4x+1)^{-\frac{1}{2}}$ $\frac{2}{3}$ for value of first derivative of equation of tangent through (2, 3) $y = \frac{2}{3}x + \frac{5}{3} \text{ or } 2x - 3y + 5 = 0$	M1 A1 A1 M1	5	any non-zero constant k or equiv, perhaps unsimplified or unsimplified equiv using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$ or equiv involving 3 terms
2		Either:	Attempt to square both sides Obtain $3x^2 - 14x + 8 = 0$ Obtain correct values $\frac{2}{3}$ and 4 Attempt valid method for solving inequality Obtain $\frac{2}{3} < x < 4$	M1 A1 A1 M1	5	producing 3 terms on each side or inequality involving < or > implied by correct answer or plausible incorrect answer or correctly expressed equiv; allow ≤ signs
		<u>Or</u> :	Attempt solution of two linear equations or inequalities Obtain value $\frac{2}{3}$ Obtain value 4 Attempt valid method for solving inequality Obtain $\frac{2}{3} < x < 4$	M1 A1 B1 M1	(5)	one eqn with signs of 2x and x the same, second eqn with signs different implied by correct answer or plausible incorrect answer or correctly expressed equiv; allow ≤ signs
3	(i)	Obtain	ot evaluation of cubic expression at 2 and 3 -11 and 31 de by noting change of sign	M1 A1 A1	√ 3	or equiv; following any calculated values provided negative then positive
	(ii)		correct first iterate of correct process to obtain at least 3 iterates 2.34		3	using x_1 value such that $2 \le x_1 \le 3$ using any starting value now answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$;

 $3\rightarrow 2.2572\rightarrow 2.3505\rightarrow 2.3392$

4723 Mark Scheme June 2006

(i) State $\ln y = (x-1) \ln 5$

B1 whether following $\ln y = \ln 5^{x-1}$ or not; brackets needed

Obtain $x = 1 + \frac{\ln y}{\ln 5}$

B1 2 AG; correct working needed; missing brackets maybe now implied

(ii) Differentiate to obtain single term of form $\frac{k}{-}$ M1

any constant k

Obtain $\frac{1}{y \ln 5}$

A1 2 or equiv involving y

(iii) Substitute for y and attempt reciprocal

М1 or equiv method for finding derivative without using part (ii)

Obtain 25 ln 5

A1 2 or exact equiv

(i) State $\sin 2\theta = 2 \sin \theta \cos \theta$

B1 1 or equiv; any letter acceptable here (and in parts (ii) and (iii))

(ii) Attempt to find exact value of $\cos \alpha$

М1 using identity attempt or rightangled triangle

Obtain $\frac{1}{4}\sqrt{15}$

Α1 or exact equiv

Substitute to confirm $\frac{1}{8}\sqrt{15}$

A1 3 AG

(iii) State or imply $\sec \beta = \frac{1}{\cos \beta}$

B1

Use identity to produce equation involving $\sin \beta$ Obtain $\sin \beta = 0.3$ and hence 17.5

M1 A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

6 (i) Either: Obtain f(-3) = -7

maybe implied

Show correct process for compn of functions M1 Obtain -47

A1 3

Show correct process for compn of functions M1 <u>Or</u>:

using algebraic approach

Obtain $2 - (2 - x^2)^2$ Α1 or equiv

Obtain -47 A1 (3)

(ii) Attempt correct process for finding inverse Obtain either one of $x = \pm \sqrt{2 - y}$ or both М1 as far as x = ... or equiv

Α1 or equiv perhaps involving x

Obtain correct $-\sqrt{2-x}$ A1 3 or equiv; in terms of x now

(iii) Draw graph showing attempt at reflection in y = xDraw (more or less) correct graph

M1

Α1 with end-point on x-axis and no minimum point in third quadrant

Indicate coordinates 2 and $-\sqrt{2}$

A1 3 accept –1.4 in place of $-\sqrt{2}$

7 (a) Obtain integral of form $k(4x-1)^{-1}$

M1 any non-zero constant k

June 2006

Mark Scheme

4723

(b)	Obtain $-\frac{1}{2}(4x-1)^{-1}$ Substitute limits and attempt evaluation Obtain $\frac{2}{21}$ Integrate to obtain $\ln x$ Substitute limits to obtain $\ln 2a - \ln a$ Subtract integral attempt from attempt at area of appropriate rectangle Obtain $1 - (\ln 2a - \ln a)$ Show at least one relevant logarithm property Obtain $1 - \ln 2$ and hence $\ln(\frac{1}{2}e)$	B1 B1 M1 A1 M1	or equiv; allow + c for any expression of form $k'(4x-1)^n$ or exact equiv or equiv or equiv at any stage of solution AG ; full detail required
,,	State $R = 13$ State at least one equation of form $R \cos \alpha = k$, $R \sin \alpha = k'$, $\tan \alpha = k''$ Obtain 67.4 Refer to translation and stretch	B1 M1 A1 3 M1	or equiv or equiv; allow \sin / \cos muddles; implied by correct α allow 67 or greater accuracy in either order; allow here equiv terms such as 'move', 'shift'; with both transformations
	State translation in positive <i>x</i> direction by 67.4 State stretch in <i>y</i> direction by factor 13	A1√ A1√ 3	involving constants or equiv; following their α ; using correct terminology now or equiv; following their R ; using correct terminology now
(iii)	Attempt value of $\cos^{-1}(2 \div R)$ Obtain 81.15 Obtain 148.5 as one solution Add their α value to second value correctly attempted Obtain 346.2	M1 A1√ A1 M1 A1 5	following their <i>R</i> ; accept 81 accept 148.5 or 148.6 or value rounding to either of these accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

4723 Mark Scheme June 2006

9 (i) Attempt to express x in terms of y

Obtain $x = e^{\frac{1}{2}y} + 1$

State or imply volume involves $\int \pi x^2$

Attempt to express x^2 in terms of y

Obtain $k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$

Integrate to obtain $k(e^y + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and p

Obtain $\pi(e^p + 4e^{\frac{1}{2}p} + p - 5)$

(ii) State or imply $\frac{dp}{dt} = 0.2$

Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of V Attempt multiplication of values or expressions

for
$$\frac{\mathrm{d}p}{\mathrm{d}t}$$
 and $\frac{\mathrm{d}V}{\mathrm{d}p}$

Obtain $0.2\pi(e^4 + 2e^2 + 1)$

Obtain 44

*M1 obtaining two terms

A1 or equiv

B1

*M1 dep *M; expanding to produce at least 3 terms

A1 any constant *k* including 1; allow if d*y* absent

Α1

M1 dep *M *M; evidence of use of 0 needed

A1 8 AG; necessary detail required

B1 maybe implied by use of 0.2 in product

B1

M1

A1 $\sqrt{\frac{dV}{d\rho}}$ expression

A1 5 or greater accuracy

4723 Mark Scheme June 2006