Mark Scheme 4723
 June 2006

1 Differentiate to obtain $k(4 x+1)^{-\frac{1}{2}}$
Obtain $2(4 x+1)^{-\frac{1}{2}}$
Obtain $\frac{2}{3}$ for value of first derivative
Attempt equation of tangent through $(2,3)$

Obtain $y=\frac{2}{3} x+\frac{5}{3}$ or $2 x-3 y+5=0$
2
Either: Attempt to square both sides
Obtain $3 x^{2}-14 x+8=0$
Obtain correct values $\frac{2}{3}$ and 4 Attempt valid method for solving inequality

Obtain $\frac{2}{3}<x<4$

Or: Attempt solution of two linear equations or inequalities

Obtain value $\frac{2}{3}$
Obtain value 4
Attempt valid method for solving inequality

$$
\text { Obtain } \frac{2}{3}<x<4
$$

A1
M1 any non-zero constant k
A1 or equiv, perhaps unsimplified
A1 or unsimplified equiv
M1 using numerical value of first derivative provided derivative is of form $k^{\prime}(4 x+1)^{n}$
A1 5 or equiv involving 3 terms

M1 producing 3 terms on each side
A1 or inequality involving < or >
A1
M1 implied by correct answer or plausible incorrect answer
A1 5 or correctly expressed equiv; allow \leq signs

M1 one eqn with signs of $2 x$ and x the same, second eqn with signs different

B1
M1 implied by correct answer or plausible incorrect answer
A1 (5) or correctly expressed equiv; allow \leq signs

3 (i) Attempt evaluation of cubic expression at 2 and 3 M1
Obtain -11 and 31
Conclude by noting change of sign
(ii) Obtain correct first iterate

Attempt correct process to obtain at least 3 iterates Obtain 2.34

A1
A1 $\sqrt{ } 3$ or equiv; following any calculated values provided negative then positive

B1 using x_{1} value such that $2 \leq x_{1} \leq 3$
M1 using any starting value now
A1 3 answer required to 2 d.p. exactly;
$2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4 (i) State $\ln y=(x-1) \ln 5$
Obtain $x=1+\frac{\ln y}{\ln 5}$
B1 whether following $\ln y=\ln 5^{x-1}$ or not; brackets needed
B1 2 AG; correct working needed; missing brackets maybe now implied
(ii) Differentiate to obtain single term of form $\frac{k}{y} \mathbf{M} \mathbf{1}$ Obtain $\frac{1}{y \ln 5}$
(iii) Substitute for y and attempt reciprocal

Obtain $25 \ln 5$

5 (i) State $\sin 2 \theta=2 \sin \theta \cos \theta$
(ii) Attempt to find exact value of $\cos \alpha$

Obtain $\frac{1}{4} \sqrt{15}$
Substitute to confirm $\frac{1}{8} \sqrt{15}$
(iii) State or imply $\sec \beta=\frac{1}{\cos \beta}$

Use identity to produce equation involving $\sin \beta$
Obtain $\sin \beta=0.3$ and hence 17.5

A1 2 or exact equiv

B1 1 or equiv; any letter acceptable here (and in parts (ii) and (iii))

M1 using identity attempt or rightangled triangle
A1 or exact equiv
A1 3 AG
any constant k
A1 2 or equiv involving y
M1 or equiv method for finding derivative without using part (ii)

B1
M1
A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

Obtain $-\frac{1}{2}(4 x-1)^{-1}$
Substitute limits and attempt evaluation

Obtain $\frac{2}{21}$
(b) Integrate to obtain $\ln x$

Substitute limits to obtain $\ln 2 a-\ln a$
Subtract integral attempt from attempt at area of appropriate rectangle
Obtain 1 - $(\ln 2 a-\ln a)$
Show at least one relevant logarithm property
Obtain $1-\ln 2$ and hence $\ln \left(\frac{1}{2} e\right)$

A1 or equiv; allow $+c$
M1 for any expression of form $k^{\prime}(4 x-1)^{n}$
A1 4 or exact equiv

B1
B1
M1 or equiv
A1 or equiv
M1 at any stage of solution
A1 6 AG; full detail required

8 (i) State $R=13$
State at least one equation of form $R \cos \alpha=k$, $R \sin \alpha=k^{\prime}, \tan \alpha=k^{\prime \prime}$

Obtain 67.4
(ii) Refer to translation and stretch

State translation in positive x direction by 67.4
State stretch in y direction by factor 13
(iii) Attempt value of $\cos ^{-1}(2 \div R)$

Obtain 81.15
Obtain 148.5 as one solution
Add their α value to second value correctly attempted
Obtain 346.2

B1 or equiv
M1 or equiv; allow sin / cos muddles; implied by correct α
A1 3 allow 67 or greater accuracy
M1 in either order; allow here equiv terms such as 'move’, 'shift’; with both transformations involving constants
$\mathbf{A 1} \sqrt{ }$ or equiv; following their α; using correct terminology now
A1 $\sqrt{ } \mathbf{3}$ or equiv; following their R; using correct terminology now

M1
A1 $\sqrt{ }$ following their R; accept 81
A1 accept 148.5 or 148.6 or value rounding to either of these

M1
A1 5 accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

9 (i) Attempt to express x in terms of y
Obtain $x=\mathrm{e}^{\frac{1}{2} y}+1$
State or imply volume involves $\int \pi x^{2}$
Attempt to express x^{2} in terms of y
Obtain $k \int\left(\mathrm{e}^{y}+2 \mathrm{e}^{\frac{1}{2} y}+1\right) \mathrm{d} y$
Integrate to obtain $k\left(\mathrm{e}^{y}+4 \mathrm{e}^{\frac{1}{2} y}+y\right)$
Use limits 0 and p
Obtain $\pi\left(\mathrm{e}^{p}+4 \mathrm{e}^{\frac{1}{2} p}+p-5\right)$
(ii) State or imply $\frac{\mathrm{d} p}{\mathrm{~d} t}=0.2$

Obtain $\pi\left(\mathrm{e}^{p}+2 \mathrm{e}^{\frac{1}{2} p}+1\right)$ as derivative of V
Attempt multiplication of values or expressions for $\frac{\mathrm{d} p}{\mathrm{~d} t}$ and $\frac{\mathrm{d} V}{\mathrm{~d} p}$
Obtain $0.2 \pi\left(\mathrm{e}^{4}+2 \mathrm{e}^{2}+1\right)$
Obtain 44
*M1 obtaining two terms
A1 or equiv
B1
*M1 dep *M; expanding to produce at least 3 terms
A1 any constant k including 1; allow if $\mathrm{d} y$ absent
A1
M1 dep *M *M; evidence of use of 0 needed

A1 8 AG; necessary detail required

B1 maybe implied by use of 0.2 in product
B1

M1
A1 \downarrow following their $\frac{\mathrm{d} V}{\mathrm{~d} p}$ expression
A1 5 or greater accuracy
physicsandmathstutor.com

